SHORT TERM URBAN TRAFFIC FORECASTING USING DEEP LEARNING
نویسندگان
چکیده
منابع مشابه
pattern-based short-term traffic forecasting for urban heterogeneous conditions
short-term traffic flow forecasting plays a significant role in the intelligent transportation systems (its), especially for the traffic signal control and the transportation planning research. two mainly problems restrict the forecasting of urban freeway traffic parameters. one is the freeway traffic changes non-regularly under the heterogeneous traffic conditions, and the other is the success...
متن کاملShort-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
Deep learning approaches have reached a celebrity status in artificial intelligence field, its success have mostly relied on Convolutional Networks (CNN) and Recurrent Networks. By exploiting fundamental spatial properties of images and videos, the CNN always achieves dominant performance on visual tasks. And the Recurrent Networks (RNN) especially long short-term memory methods (LSTM) can succ...
متن کاملA Deep Learning Framework for Short-term Power Load Forecasting
The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity pri...
متن کاملShort-Term Traffic Forecasting Using Self-Adjusting k-Nearest Neighbours
Short-term traffic forecasting is becoming more important in intelligent transportation systems. The k-nearest neighbours (kNN) method is widely used for short-term traffic forecasting. However, the self-adjustment of kNN parameters has been a problem due to dynamic traffic characteristics. This paper proposes a fully automatic dynamic procedure kNN (DP-kNN) that makes the kNN parameters self-a...
متن کاملShort-term Traffic Flow Forecasting Using Dynamic Linear Models
Intelligent Transportation Systems (ITS) is an emerging concept which has been utilised to improve efficiency and sustainability of existing transportation systems. Short term traffic flow forecasting, the process of predicting future traffic conditions based on historical and realtime observations is an essential aspect of ITS. The existing well-known algorithms used for short-term traffic for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2018
ISSN: 2194-9050
DOI: 10.5194/isprs-annals-iv-4-w7-3-2018